The number of transversals in a Latin square
نویسندگان
چکیده
A Latin square of order n is an n × n array of n symbols, in which each symbol occurs exactly once in each row and column. A transversal is a set of n entries, one selected from each row and each column of a Latin square of order n such that no two entries contain the same symbol. Define T (n) to be the maximum number of transversals over all Latin squares of order n. We show that bn ≤ T (n) ≤ cn√n n! for n ≥ 5, where b ≈ 1.719 and c ≈ 0.614. A corollary of this result is an upper bound on the number of placements of n non-attacking queens on an n × n toroidal chess board. Some divisibility properties of the number of transversals in Latin squares based on finite groups are established. We also provide data from a computer enumeration of transversals in all Latin squares of order at most 9, all groups of order at most 23 and all possible turn-squares of order 14.
منابع مشابه
Transversals in Latin Squares
A latin square of order n is an n×n array of n symbols in which each symbol occurs exactly once in each row and column. A transversal of such a square is a set of n entries such that no two entries share the same row, column or symbol. Transversals are closely related to the notions of complete mappings and orthomorphisms in (quasi)groups, and are fundamental to the concept of mutually orthogon...
متن کاملTransversals in Latin Squares: A Survey
A latin square of order n is an n×n array of n symbols in which each symbol occurs exactly once in each row and column. A transversal of such a square is a set of n entries containing no pair of entries that share the same row, column or symbol. Transversals are closely related to the notions of complete mappings and orthomorphisms in (quasi)groups, and are fundamental to the concept of mutuall...
متن کاملOn chromatic number of Latin square graphs
The chromatic number of a Latin square is the least number of partial transversals which cover its cells. This is just the chromatic number of its associated Latin square graph. Although Latin square graphs have been widely studied as strongly regular graphs, their chromatic numbers appear to be unexplored. We determine the chromatic number of a circulant Latin square, and find bounds for some ...
متن کاملOn the intersection of three or four transversals of the back circulant latin squares
Cavenagh and Wanless [Discrete Appl. Math. 158 no. 2 (2010), 136–146] determined the possible intersection of any two transversals of the back circulant latin square Bn, and used the result to completely determine the spectrum for 2-way k-homogeneous latin trades. We generalize this problem to the intersection of μ transversals of Bn such that the transversals intersect stably (that is, the int...
متن کاملOn the number of transversals in Cayley tables of cyclic groups
It is well known that if n is even, the addition table for the integersmodulo n (whichwe denote by Bn) possesses no transversals.We show that ifn is odd, then the number of transversals in Bn is at least exponential in n. Equivalently, for odd n, the number of diagonally cyclic latin squares of order n, the number of completemappings or orthomorphisms of the cyclic group of order n, the number ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Des. Codes Cryptography
دوره 40 شماره
صفحات -
تاریخ انتشار 2006